skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eades_III, Harley"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Endrullis, Jörg; Schmitz, Sylvain (Ed.)
    Graded modal logics generalise standard modal logics via families of modalities indexed by an algebraic structure whose operations mediate between the different modalities. The graded "of-course" modality !_r captures how many times a proposition is used and has an analogous interpretation to the of-course modality from linear logic; the of-course modality from linear logic can be modelled by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed into an adjunction and a "strict action". We give a similar result to Benton, leveraging Fujii et al.’s decomposition, showing that graded modalities can be split into two modalities connecting a graded logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical model, and a natural deduction system which we show is isomorphic to the sequent calculus system. Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an action that adds the grading, further illuminating the shared principles between linear logic and a class of graded modal logics. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Graded Type Theory provides a mechanism to track and reason about resource usage in type systems. In this paper, we develop GraD, a novel version of such a graded dependent type system that includes functions, tensor products, additive sums, and a unit type. Since standard operational semantics is resource-agnostic, we develop a heap-based operational semantics and prove a soundness theorem that shows correct accounting of resource usage. Several useful properties, including the standard type soundness theorem, non-interference of irrelevant resources in computation and single pointer property for linear resources, can be derived from this theorem. We hope that our work will provide a base for integrating linearity, irrelevance and dependent types in practical programming languages like Haskell. 
    more » « less